SONY_®

Digital Video Camera Module

Technical Manual

XCU-CG160/CG160C

© 2018 Sony Corporation

Table of Contents

Overview

Features	3
Phenomena Specific to Image Sensors	4
System Components	4
Location and Function of Parts and	
Operation	5
Front/top/bottom	5
Rear	5

Getting Started

Connections	6
About the power supply	6
USB 3.0 connection	6
Connecting the cables	7
Mounting on a tripod	7
When mounting the camera	7

Functions

Trigger Signal Input	8
Trigger signal polarity	8
GPIO Connector	9
Partial Scan	11
Binning (XCU-CG160 only)	11
Camera Mode	12
Multi ROI	13
Output Format	
Image Flin	
Gain	15
Manual gain	
Auto gain (AGC)	
Area gain	15
Shutter (Exposure)	16
Configuration method	16
Auto exposure (AE)	16
Combination of Continuous AGC and	
Continuous AE	16
Trigger Control	17
Free run/trigger mode	17
Trigger source	17
Burst trigger	18
Trigger inhibit	19
Trigger delay	20
Trigger counter	20
Trigger range limit	20
Frame Rate	21
Auto frame rate	21
Specifying the frame rate	21
Displaying the frame rate	
Fastest frame rate for partial scanning .	21

Timing Chart	22
Trigger latency/Exposure time	22
Trigger overlap	23
White Balance (Color Camera Only)	24
LUT	25
Binarization	25
5-point interpolation	25
Arbitrary setting	25
Saving a LUT	26
Color Matrix Conversion (Color Camera	
Only)	26
Test Chart Output	26
3 × 3 Filter	27
GPIO	28
GPI	28
GPO	28
Status LED	30
Temperature Readout Function	30
Defect Correction	30
Shading Correction	31
User Set	33
User set memory	33
User ID	33
Saving and Startup	33
Camera Information	33
Restarting	33
Command List	

Specifications

Specifications	42
Spectral Sensitivity Characteristics (Typical	
Values)	43
Dimensions	44

Overview

This unit is a digital video camera module that adopts a USB 3.0 interface for image output and camera control. The XCU-CG160 is a monochrome models, and the XCU-CG160C is a color model.

In this document, "Digital Video Camera Module" is referred to as the "unit", "XCU-CG160" as

"Monochrome camera", and "XCU-CG160C" as "Color camera".

Features

USB 3.0 interface

Image output and camera control are performed over a USB 3.0 interface.

USB3 Vision adoption

The USB3 Vision standard is adopted to enable simple camera control.

High image quality

This unit produces stable output images, by adopting the latest CMOS image sensors with a global shutter function. By adopting a square pixel image sensor, images can be processed using the original aspect ratio without a conversion procedure.

Various settings

Various settings can be configured by sending a command from a host device.

External trigger shutter function

By synchronizing with an external trigger signal, any shutter timing can be used.

Partial scan

The camera module can limit the number of video output lines to achieve high frame rates, enabling highspeed image processing.

Chassis mount

Screw holes for mounting the camera module are located under the front panel. Mounting the camera module at this location minimizes the deviation of the optical axis.

LUT (Look Up Table)

A LUT can be turned on/off. When turned on, you can select from five preset values, such as inversion, binarization, configurable five-point approximations, etc.

White balance control (color camera only)

You can adjust the R and B levels relative to the G level to adjust the white balance. This unit is also equipped with a one-push white balance function for automatic camera white balance adjustment.

Area gain function

You can set the gain between 0 to 32 times for up to 16 arbitrary positions. If the set area is duplicated, the low-numbered area takes priority.

Equipped with temperature sensor

The camera's internal temperature can be read from a temperature sensor mounted on the module board. If the update interval of the temperature sensor value is set to other than 0, temperature information can be sent to a PC application as event data.

Pixel defect correction function

This unit is equipped with a defective pixel correction function that reduces the effect of sensor defects. It can be switched on/off.

Shading correction function

This unit is equipped with a function that corrects the shading caused by a light source or lens. It can be switched on/off.

Binning function (XCU-CG160 only)

Adding two pixels in the vertical and horizontal directions achieves higher sensitivity and frame rate.

Phenomena Specific to Image Sensors

Note

The following phenomena that may occur in images are specific to image sensors. They do not indicate a malfunction.

White flecks

Although the image sensors are produced with highprecision technologies, fine white flecks may be generated on the screen in rare cases, caused by cosmic rays, etc.

This is related to the principle of image sensors and is not a malfunction.

The white flecks especially tend to be seen in the following cases:

- When operating at a high environmental temperature
- When you have raised the gain (sensitivity)
- When using the slow shutter

Aliasing

When fine patterns, stripes, or lines are shot, they may appear jagged or flicker.

System Components

A system centered on the unit can comprise the following components (available separately).

1 Video camera module (this unit)

This is a small-size, high-resolution, camera that uses a CMOS image sensor with a global shutter function.

2 Camera cable

This is attached to the DC power input connector of the unit and is used for the power supply and exchange of trigger signals. For details about purchasing a cable, consult a dealer.

3 C-mount lens

Use a suitable lens to fit the camera pixel count.

4 DC-700/700CE Camera Adaptor

This is connected to the unit to enable power supply from an ordinary AC power source.

5 VCT-333I Tripod Adaptor

This attaches to the bottom of the unit to mount the unit on a tripod.

6 USB 3.0 interface image input board

Install the board in the expansion slot of the host device (computer or other device).

The camera can also be connected to a USB 3.0 port on a computer, but the use of the input board is

recommended.

This document describes the case where the input board is used.

7 USB 3.0 cable

Connect to the USB connector on the rear panel of the unit to send image signals and to receive control signals. Use a Standard USB A to USB Micro B, USB 3.0 cable that is compatible with the USB3 Vision standard. For details about purchasing a cable, consult a dealer.

Location and Function of Parts and Operation

Front/top/bottom

1 Lens mount (C-mount)

Attach any C-mount lens or other optical equipment.

Note

Use a C-mount lens where the protrusion (a) extending from the lens mount face (b) is 10 mm (13/32 inch) or less.

When attaching a lens to the camera, note that the resolution of the image that is output from the camera may vary depending on the performance of the lens. The performance of the same lens may also vary depending on the aperture value.

If the resolution is insufficient, adjust the aperture value.

2 Camera mount guide screw holes (top)

3 Camera mount guide screw holes/Tripod attachment screw holes (bottom)

When using a tripod, use these four screw holes to attach a VCT-333I Tripod Adaptor.

For details, see "Mounting on a tripod" (page 7).

4 Camera mount reference screw holes (bottom)

These precision screw holes are for securing the camera module. Securing the unit with these holes minimizes any optical axis alignment offset.

For details about the size of and position of guide holes and reference holes, see "Dimensions" (page 44).

Rear

(DC power input) connector (6-pin)

You can connect a camera cable to input a 12 V DC power supply. The pin configuration of this connector is as follows.

(Refer to part **3** above for the pin assignment of the connector.)

Pin No.	Signal	Pin No.	Signal
1	DC input (10.5 V to 15 V)	4	GPO3 (ISO +)
2	GPI1 (ISO +)	5	ISO –
3	GPI2/GPO2	6	GND

6 USB connector (Micro B type)

Connect a USB 3.0 cable to control the camera module from a host device and to send image signals from the camera module. Power can be supplied from a USB 3.0 interface video input board or from a USB hub over the USB 3.0 cable.

CAUTION

- For safety, do not connect the connector for peripheral device wiring that might have excessive voltage to this port. Follow the instructions for this port.
- Use a Standard USB A to USB Micro B, USB 3.0 cable that is compatible with the USB3 Vision standard.
- USB 2.0 is not supported.

7 Status LED (green)

Displays the unit status. For details, see "Status LED" (page 30).

Connections

About the power supply

You can supply power to the unit using the following methods.

Supplying power using the USB connector

Power supply, camera control, and image output are all supported using a single USB 3.0 cable.

Supplying power using the DC power supply input connector

You can supply power via the DC power supply input connector using the power adaptor. Use the DC-700/700CE, which provides a stable power source free from ripple or noise.

Heat dissipation

Heat dissipation may be required, depending on the usage environment. For details, see "When mounting the camera" (page 7).

USB 3.0 connection

- **1** Insert the USB 3.0 interface image input board (not supplied) into an expansion slot of the host device.
- **2** Connect the unit and host device using a USB 3.0 cable (not supplied). For details, see "Connecting the cables" (page 7).
- **3** Check that the unit is successfully recognized on the screen of the host device, and click the model name. A viewer appears and displays the camera image.

Note

The method of operation varies depending on the application used.

About control of the camera module

To control the unit from a host device, USB 3.0 compatible software must be installed on the host device.

To use the Sony USB 3.0 Software Development Kit (SDK), download the software from the Sony website. For details about software operation, refer to the corresponding instruction manual.

Connecting the cables

Connect the camera cable (③) to the DC power supply input connector (④), and connect a USB 3.0 cable (④) to the USB connector (④). If using a USB 3.0 interface image input board or a hub, you can operate the camera even if you do not connect the camera cable to the DC power supply input connector.

It you connect a USB 3.0 cable that has fastening screws, turn the two screws (④) on the connector to secure the cable tightly.

Connect the other end of the USB 3.0 cable to the USB 3.0 interface image input board or a hub.

Mounting on a tripod

To use a tripod, attach the VCT-333I Tripod Adaptor (not supplied) to the camera module.

Use a tripod screw that protrudes (ℓ) beyond the mounting surface, as follows, and tighten it using a screwdriver. Be sure that the protrusion (ℓ) does not exceed 5.5 mm (0.2 in.) in length.

ℓ: 4.5 mm to 5.5 mm

	+	
 <u>e</u>	l l	
	ilia, † °	

Note

When attaching the tripod adaptor (not supplied), use the screws provided with the tripod adaptor.

When mounting the camera

When the value read from temperature sensor is above 75 °C (167 °F), heat dissipation is required. Use in environments where the difference with the ambient temperature is 32 °C (90 °F) or less.

To facilitate heat dissipation from the unit and maintain performance, mount the camera to a metallic plate.

Notes

- When mounting the camera on the metallic plate, secure the camera by using the reference screw holes on the camera (page 5) and screws.
- Do not mount the camera on a plate made of a material, such as wood or resin, that prevents heat dissipation.

Default value for each item is underlined.

Trigger Signal Input

Trigger signals can be input via pins 2, 3, and 4 of the DC power supply input connector, or by software command. Switchover of the trigger signal can be changed using TriggerSource. For details, see "Trigger Control" (page 17).

Trigger signal polarity

Positive polarity refers to a trigger signal activated by a Low to High rising edge, or High-level interval. Negative polarity refers to a trigger signal activated by a High to Low falling edge, or Low-level interval. The default value of the camera is negative polarity.

Feature	Parameter	Setting
TriggerActivation	FallingEdge (0)	<u>Negative</u>
	RisingEdge (1)	Positive

DC power supply input connector specifications

Notes

- When inputting a trigger signal to the camera using the DC-700/700CE, use 5 V DC or lower as the logical high level.
- Make sure to supply power to the unit and confirm that the unit is operating before inputting a trigger signal. If you input a trigger signal to the unit without the power supplied, this may cause a malfunction of the camera.

GPIO Connector

Pin 2 of the DC power supply connector is a GPI connector, pin 3 can be set as either a GPI or GPO connector, and pin 4 is a GPO connector. The default trigger source is pin 2 of the DC power supply input connector (GPI1). If connecting an external device to the GPI or GPO connector, refer to the circuit specifications below.

GPI circuit specifications

* Rising edge of the input signal should be as fast as possible.

Example

Input voltage [V]	TDF [ns]	FT [ns]	TDR [ns]	RT [ns]
5.0	167	297	192	358

GPIO circuit specifications

Example

When connecting to an external power supply, be sure to use a pull-up resistor to limit the current to 50 mA or less.

	Supply voltage of the output [V]	Pull up resistance (Use 1/16 W)	Current [mA]	TDF [µs]	FT [µs]	TDR [µs]	RT [µs]	Output voltage [V]
Ambient	3.3	470 Ω	5.07	0.75	0.49	24	35	0.916
temperature	5.0	820 Ω	4.98	0.73	0.63	28	46	0.909
	12.0	Two 2200 Ω resistors in parallel	9.87	0.71	1.05	36	64	1.112
	24.0	Eight 8200 Ω resistors in parallel	21.85	0.73	1.45	45	76	1.571

Partial Scan

Only an area selected from the effective pixel area can be scanned. The area size is selected by Height and Width, and the read start point is selected by OffsetX and OffsetY. Reducing Height increases the frame rate, but changing Width does not change the frame rate. Partial scan can be set with or without a trigger. OffsetX and OffsetY relate to Width and Height as follows:

OffsetX + Width ≤ Width (maximum value) OffsetY + Height ≤ Height (maximum value)

Note

Since the shutter setting has priority, use a shutter speed high enough to enable partial scan at a higher frame rate.

Configurable range

Feature	Parameter
OffsetX	0 to <u>8</u> to 1440
OffsetY	0 to <u>4</u> to 1072
Width	16 to <u>1440</u> to 1456
Height	16 to <u>1080</u> to 1088

Configurable values

OffsetX, OffsetY, Width, Height: Increments of 4

Binning (XCU-CG160 only)

Adding two pixels in the vertical and horizontal directions achieves higher sensitivity and frame rate.

Feature	Parameter	Setting
BinningVertical	1	Vertical binning is off
	2	Vertical binning is on
BinningHorizontal	1	Horizontal binning is off
	2	Horizontal binning is on

Notes

- To increase the frame rate for binning, use the shutter at a sufficiently high speed.
- When using binning, the configurable values for OffsetX, OffsetY, Width, and Height are halved and change in increments of 2.

Camera Mode

"FAST" mode prioritizes the frame rate, and is set by default.

The frame rate upper limit of "FAST" mode is higher than for "NORMAL" mode, but the available functions are limited.

When correcting defects/shading in "FAST" mode, detect and save the defects/shading in "NORMAL" mode and then return to "FAST" mode.

Reboot the unit to apply the change in camera mode.

Feature	Parameter		Setting
CameraModeSelector	Fas	stMode (0)	FAST
	No	rmalMode (1)	NORMAL
Function		FAST	NORMAL
Maximum frame rate		100 fps	56 fps
Defect detection function (page 30)		_	•
Defect correction function (page 30)		•	•
Shading detection function (page 31)		-	•
Shading correction function (page 31)		•	•
Output format		See "Output Fo	ormat" (page 14).

•: Available function, -: Unavailable function

Multi ROI

You can set and read two arbitrary rectangular areas from the effective pixel area. By reading only the required parts, you can shorten the time it takes to read.

Feature	Parameter	Setting	
MultiROIMode	<u>Off (0)</u>	All areas Off	
	On (1)	All areas On	
	Highlight (2)	Displays the specified region highlighted.	
MultiROISelect	<u>0</u> to 1	Designates the number of the area for which to change parameters.	
MultiROIEnable	False (0)	The area designated in MultiROISelect is Off.	
	<u>True (1)</u>	The area designated in MultiROISelect is On.	
MultiROIWidth	4 to <u>128</u> to 1456	Horizontal size of the area	
MultiROIHeight	4 to <u>128</u> to 1088	Vertical size of the area	
MultiROIOffsetX	0 to <u>128</u> to 1452	Horizontal position of the area	
MultiROIOffsetY	0 to <u>128</u> to 1084	Vertical position of the area	

Before partial scan

After partial scan

Output Format

The configurable pixel formats are as follows:

XCU-CG160 (monochrome camera)

Feature	Camera mode	ReverseX	ReverseY	Parameter	Setting
PixelFormat	FAST	False or True	False or True	0x01080001	Mono8
	NORMAL	False or True	False or True	0x01080001	Mono8
				0x010C0047	Mono12p

XCU-CG160C (color camera)

Feature	Camera mode	ReverseX	ReverseY	Parameter	Setting
PixelFormat	FAST	False or True	False or True	0x01080001	Mono8 ^{*1}
		False	False	0x01080009	BayerRG8
		False	True	0x0108000A	BayerGB8
		True	False	0x01080008	BayerGR8
		True	True	0x0108000B	BayerBG8
		False or True	False or True	0x02180015	BGR8 ^{*2}
	NORMAL	False or True	False or True	0x01080001	Mono8
		False	False	0x01080009	BayerRG8
				0x010C0059	BayerRG12p
		False	True	0x0108000A	BayerGB8
				0x010C0055	BayerGB12p
		True	False	0x01080008	BayerGR8
				0x010C0057	BayerGR12p
	Tr	True	True	0x0108000B	BayerBG8
			0x010C0053	BayerBG12p	
	False or True	False or True	0x02180015	BGR8	
				0x0218005B	YCbCr8
				0x0210003B	YCbCr422_8

*1 Monochrome output due to binning.

*2 Image size is half of standard size.

Image Flip

Flips an image vertically and horizontally. Reboot the unit to reflect the changes of the setting.

Feature	Parameter	Setting
ReverseX	<u>False (0)</u>	Off (no flip)
	True (1)	Flip horizontally
ReverseY	False (0)	Off (no flip)
	True (1)	Flip vertically

Gain

Manual gain

The manual gain can be finely set in 0.1 dB increments. Although the configurable lower/upper limit values of the gain are slightly different for each camera, the configurable values for the GainAnalog parameter are -1 dB or lower to +27 dB or higher.

The rage of the gain setting that guarantees image quality is 0 dB to 18 dB.

Feature	Parameter	Setting
GainAnalog	-1 or lower to <u>0</u> to +27 or higher	Gain dB unit

Auto gain (AGC)

By setting auto gain, the gain is automatically adjusted according to the imaging environment. AGC operates so that the average level within a detection frame satisfies the GainAutoLevel setting. The AGC detection frame is set to the central region by default. The detection frame can be displayed and the detection area can be changed.

Feature	Parameter	Setting
GainAuto	<u>Off (0)</u>	<u>Manual gain</u>
	Once (1)	One-push AGC
	Continuous (2)	Continuous AGC
GainAutoLevel	0 to <u>11264</u> to 16383	AGC target level (14 bits)
GainAutoSpeed	1 to <u>192</u> to 256	AGC convergence speed
GainAutoUpperLimit	-1 or lower to ± 18 to ± 27 or higher	AGC upper limit
GainAutoLowerLimit	-1 or lower to $\underline{0}$ to +27 or higher	AGC lower limit

Feature	Parameter	Setting
GainAutoHighlight	False (0)	AGC detection frame is hidden
	True (1)	AGC detection frame is displayed
GainAutoAreaWidth	1 to <u>50</u> to 100	Horizontal size of AGC detection frame
GainAutoAreaHeight	1 to <u>50</u> to 100	Vertical size of AGC detection frame
GainAutoAreaOffsetX	0 to <u>25</u> to 99	Horizontal position of AGC detection frame
GainAutoAreaOffsetY	0 to <u>25</u> to 99	Vertical position of AGC detection frame

Area gain

A separate digital gain can be set for up to 16 rectangular areas.

If multiple rectangular areas are duplicated, the gain value of the low-numbered area takes priority.

Feature	Parameter	Setting
AreaGainEnableAll	<u>False (0)</u>	Gain in all areas set to Off
	True (1)	Gain in all areas set to On
AreaGainSelect	0 to 15	Designates the number of the area for which to change parameters.
AreaGainEnable	False (0)	Gain of area specified by AreaGainSelect set to Off
	True (1)	Gain of area specified by AreaGainSelect set to On
AreaGainWidth	0 to <u>128</u> to Width	Horizontal size of area [*]
AreaGainHeight	0 to <u>128</u> to Height	Vertical size of area [*]
AreaGainOffsetX	OffsetX to <u>128</u> to Width	Horizontal position of area [*]
AreaGainOffsetY	OffsetY to <u>128</u> to Height	Vertical position of area [*]

Feature	Parameter	Setting
AreaGainValue	0 to <u>256 (x1)</u> to 8191	Gain value of area

* Specify the area size and position of the area gain in absolute coordinate values relative to the effective pixels. Therefore, the range of the area size and position needs to be set within the readout range.

Shutter (Exposure)

Configuration method

The setting is configured in μ s units. The default shutter value is the value with the frame rate maximized. During free run operation, the frame rate is reduced by setting a value bigger than the default shutter value. If you do not prioritize the image quality, you can set it to a value of up to 60 seconds during operation. If the exposure time is long, it will be easier to see the pixel defects.

Note

The exposure times that can be set varies depending on the mode.

Check the actual value by reading out after completing settings.

Feature	Parameter	
ExposureTime	1 [*] to <u>9600</u> to 6000000	

* The minimum value varies depending on the settings.

Auto exposure (AE)

The shutter is set automatically by detecting the output level. The target level is the same as the value of GainAutoLevel. This can be performed in conjunction with auto gain.

Feature	Parameter	Setting
ExposureAuto	<u>Off (0)</u>	Manual shutter
	Once (1)	One-push AE
	Continuous (2)	Continuous AE
ExposureAutoSpeed	1 to <u>192</u> to 256	AE convergence speed
ExposureAutoUpper- Limit	1 to <u>9600</u> to 60000000	AE upper limit
ExposureAutoLower- Limit	1 to <u>10</u> to 6000000	AE lower limit

Combination of Continuous AGC and Continuous AE

AGC and AE operate together to adjust the level automatically with GainAutoLevel as the target level. When the environment starts getting dark and AE reaches the upper limit, AGC starts to operate.

Trigger Control

Free run/trigger mode

Free run

The camera operates without a trigger signal and performs image output operation continuously after the shutter (exposure) is finished. The horizontal and vertical timing signals are generated within the camera. During free-run operation, image pickup timing cannot be controlled. In free-run operation, adjustment is made automatically to achieve the maximum frame rate according to the shutter setting.

Trigger mode

Exposure is started by detecting an external input trigger signal. When ExposureMode is set to Timed, exposure is started by detecting the rising or falling edge of the trigger signal (trigger edge detection performed based on the set shutter value). When ExposureMode is set to TriggerWidth, trigger width detection is performed (exposure during the trigger signal pulse width).

Feature	Parameter	Setting
TriggerMode	<u>Off (0)</u>	Free run
	On (1)	Trigger mode

Trigger source

A trigger source can be input via the DC power supply input connector or via software command (TriggerSoftware).

Feature	Parameter	Setting
TriggerSource	Line1 (0)	Pin 2 of the DC power supply input connector
	Line2 (1)	Pin 3 of the DC power supply input connector
	Software (4)	Software

In trigger mode (TriggerMode=On)

Feature	Parameter	Setting
ExposureMode	<u>Timed (0)</u>	Trigger edge detection
	TriggerWidth (1)	Trigger width detection

Note

A combination of TriggerSource Software setting and ExposureMode TriggerWidth setting is not supported.

Trigger edge detection

The figure shows trigger signal negative polarity (falling-edge detection).

Trigger width detection

The figure shows trigger signal negative polarity (Low-level width detection).

Burst trigger

Exposure can be repeated with a single trigger signal. Two modes are available: a mode that repeats a single exposure time and a mode that alternately repeats two exposure times. You can specify the number of exposures and the interval between repeatedly setting the trigger signal on.

Feature	Parameter	Setting			
BurstTriggerMode	<u>Off (0)</u>				
	SingleExposureMode	Upon trigger edge detection	Exposes for the period set in ExposureTime.		
	(1)	Upon trigger width detection	Exposes for the range of trigger width.		
	DualExposureMode (2)	Upon trigger edge detection	Exposes for periods set in ExposureTime and ExposureTime2 alternatively.		
		Upon trigger width detection	Exposes for periods in trigger width and trigger width × Exposure2Ratio alternately.		
BurstTriggerPeriod	FrameCount (0)	Exposes only the number of times set in BurstFrameCount.			
	TriggerDuration (1)	Performs burst exposure while the input trigger is on. However, burst exposure is terminated when it reaches BurstFrameCount. Enabled when ExposureMode is in edge detection mode. Disabled in width detection mode.			
BurstFrameCount	0 to <u>1</u> to 65533	0: Repeats continuously			
		1 or more: Exposure for designated number of times			
BurstForceStop		Forced termination of repeated exposure			
Exposure2Time	1 to <u>83998</u> to 6000000	Second exposure time during trigger edge detection			
Exposure2Ratio	×1 (1), ×2 (2), ×4 (4), ×8 (8), ×16 (16)	Value to determine the second exposure time of trigger width detection. The first exposure time (trigger width) multiplied by this value is the second exposure time.			

Trigger edge detection (ExposureMode = Timed)

BurstTriggerPeriod=TriggerDuration

BurstTriggerMode = DualExposureMode

Trigger signal								
Exposure	ExposureTime	Exposure2Time	ExposureTim	e Exposure2Time	ExposureTim	e Exposure2Time	ExposureTim	e Exposure2Time

The continuous exposure ends when either one of the following conditions occurs.

- Trigger signal Off is detected
- The number of times of exposure reaches the number specified in BurstFrameCount

Trigger width detection (ExposureMode = TriggerWidth)

BurstFrameCount = 7 BurstTriggerMode=DualExposureMode

Trigger states

Trigger inhibit

Trigger input can be disabled. This function is effective when disabling the trigger signal to a specific camera in an environment where multiple cameras are triggered by the same trigger signal, and when preventing false operations caused by noise on the trigger signal line (due to the installed environment).

Feature	Parameter	Setting
TriggerInhibit	<u>False (0)</u>	Trigger is accepted
	True (1)	Trigger is not accepted

Trigger delay

The camera can delay the trigger signal.

Trigger signal	
Exposure	
Sensor output	TriggerDelay

Feature	Parameter	Setting
TriggerDelay	<u>0</u> to 4000000	Trigger delay [µs]

Trigger counter

This counts the number of accepted triggers. Triggers that have been removed because they exceed the trigger range limit and triggers input with invalid timing are not counted. The trigger counter returns to 0 when the upper limit (2147483647) is reached. The trigger counter can be reset to 0 by issuing TriggerCounterReset.

Trigger range limit

Only signals in the set trigger width can be accepted as a trigger signal. This functions as a noise filter, which removes chattering or disturbance noise in the trigger signal line. When a trigger signal is input, exposure is started with a time lag set by the trigger range set value. No image is output outside the trigger signal width set range.

Feature	Parameter	Setting
TriggerAcceptanceRangeEnable	<u>False (0)</u>	Trigger range off
	True (1)	Trigger range on
TriggerAcceptanceRangeLowerLimit	<u>1</u> to 2000000	Trigger range lower limit [µs]

Trigger range operation example

ExposureTime=300, TriggerAcceptanceRangeLowerLimit=100 in the figure.

Frame Rate

Auto frame rate

The read cycle is set to allow the frame rate to be the maximum value automatically, according to the current shutter setting and the partial scan setting in free-run operation (shutter has priority). The next exposure is performed during image output, and the next image output is started immediately after finishing all image output. The frame rate is reduced by setting a shutter time longer than the image output time.

Feature	Parameter	Setting
AcquisitionFrameRateAuto	False (0)	Auto frame rate off
	<u>True (1)</u>	Auto frame rate on

Specifying the frame rate

The frame rate of the image output can be specified in free-run operation. Enter the value of the frame rate [fps]. A frame rate faster than the fastest frame rate cannot be set.

Feature	Parameter	Setting
AcquisitionFrameRate	0.0625 to 100 to 4000 *	Frame rate [fps]

* The upper limit varies depending on the partial scan setting.

Displaying the frame rate

The current frame rate during auto frame rate operation is displayed.

Feature
AcquisitionFrameRateActual

Fastest frame rate for partial scanning

The fastest frame rate varies depending on the Height parameter for partial scanning.

Frame Counter

You can read out the number of frames captured by the camera. The counter can be reset.

Feature
FrameCounter
FrameCounterReset

Timing Chart

Trigger latency/Exposure time

The values of trigger latency (time from trigger acceptance to exposure start) and exposure time are as follows.

Feature	Parameter	Trigger latency	Exposure time
TriggerFastMode	False (0)	Approx. 8 µs to approx. 82 µs	ExposureTime \pm (approx. 0 µs to 27 µs)
	<u>True (1)</u>	Approx. 0.2 µs	ExposureTime \pm (approx. 0 µs to 13 µs)

The variation in trigger latency and exposure time varies depending on the output mode setting.

Trigger overlap

Set TriggerFastMode to False.

Trigger signals can be accepted during the interval that sensor readout signals are asserted. If the trigger cycle exceeds the maximum value of the frame rate, images are distorted.

When trigger overlap is allowed (when TriggerFastMode is False)

When trigger overlap is inhibited (when TriggerFastMode is True)

White Balance (Color Camera Only)

The white balance can be automatically adjusted by executing the BalanceWhiteAuto command. The detection area is set to the screen center by default. The detection area can also be displayed on the screen. The detection frame can be changed arbitrarily. For manual correction, change the GainDigital parameter.

Feature	Parameter	Setting
BalanceWhiteAuto	<u>Off (0)</u>	Manual correction
	Once (1)	One-push AWB
	Continuous (2)	Continuous AWB
GainDigitalRed	256 (×1) to 4095	Red gain
GainDigitalGreen	256 (×1) to 4095	Green gain
GainDigitalBlue	256 (×1) to 4095	Blue gain
BalanceWhiteHighlight	False (0)	AWB detection frame is hidden
	True (1)	AWB detection frame is displayed
BalanceWhiteAutoAreaWidth	1 to <u>50</u> to 100	Horizontal size of AWB detection frame
BalanceWhiteAutoAreaHeight	1 to <u>50</u> to 100	Vertical size of AWB detection frame
BalanceWhiteAutoAreaOffsetX	0 to <u>25</u> to 99	Horizontal position of AWB detection frame
BalanceWhiteAutoAreaOffsetY	0 to <u>25</u> to 99	Vertical position of AWB detection frame

Detection frame area Output image

LUT

Five types of presets are provided. Specify using a 12-bit value. Binarization, 5-point interpolation, and arbitrary setting can be changed.

Feature	Parameter	Setting
LUTEnable	False (0)	<u>LUT off (g=1)</u>
	True (1)	LUT on
LUTFormat	Linear (0)	<u>Linear (γ=1)</u>
	Reverse (1)	Reverse
	Binarization (2)	Binarization
	LinearInterpolation (3)	5-point interpolation
	UserSet (4)	Arbitrary setting

Binarization

The binarization threshold can be changed.

Feature	Parameter
BinarizationThreshold	0 to <u>2047</u> to 4095

5-point interpolation

The values of output points 1 through 5 that correspond to input points 1 through 5 can be changed. Linear interpolation is performed between interpolation points.

Feature	Parameter	Setting
LinearInterpolationIndex	Index1 to Index5	Select the interpolation points
LinearInterpolationInValue	0 to 4095	Input
LinearInterpolationOutValue	0 to 4095	Output
LinearInterpolationBuild		Build LUT

Setting example:

LinearInterpolationIndex = Index1 LinearInterpolationInValue = 240 LinearInterpolationOutValue = 200 LinearInterpolationIndex = Index2 LinearInterpolationInValue = 900 LinearInterpolationOutValue = 400 LinearInterpolationIndex = Index3 LinearInterpolationInValue = 2047 LinearInterpolationOutValue = 3000 LinearInterpolationIndex = Index4 LinearInterpolationInValue = 3000 LinearInterpolationOutValue = 3200 LinearInterpolationIndex = Index5 LinearInterpolationInValue = 3800 LinearInterpolationOutValue = 3900 LinearInterpolationBuild

Arbitrary setting

The output values 0 through 4095 that correspond to input values 0 through 4095 can be changed.

Feature	Parameter	Setting
LUTIndex	0 to 4095	Input
LUTValue	0 to 4095	Output

Setting example:

LUTIndex = 0
LUTValue = 3
LUTIndex = 1
LUTValue = 10
LUTIndex = 4094
LUTValue = 4000
LUTIndex = 4095
LUTValue = 4010

Saving a LUT

When you change the settings, save them using the LUTValueSave command.

Feature	Parameter	Setting
LUTValueSave		Save LUT

Color Matrix Conversion (Color Camera Only)

When the color camera is set to BGR8, YCbCr8, or YCbCr422_8 output, the following color matrix conversion can be applied. Specify using values between -8191 and +8191. 256 is $\times 1$.

Feature	Parameter	Setting
ColorTransformationEnable	<u>False (0)</u>	Conversion off
	True (1)	Conversion on

Feature	Parameter	Setting
ColorTransformationValue Selector	TopLeft, TopCenter, TopRight, CenterLeft, CenterCenter, CenterRight, BottomLeft, BottomCenter, BottomRight	Matrix position
ColorTransformationValue	-8191 to <u>+256</u> to +8191	Gain value

F	2		TopLeft	TopCenter	TopRight	$\begin{bmatrix} R \end{bmatrix}$
0	7	=	CenterLeft	CenterCenter	CenterRight	G
E	3		BottomLeft	BottomCenter	BottomRight	B

Test Chart Output

For monochrome cameras, a monochrome chart can be set. For color cameras, a monochrome chart or a color chart can be set.

Feature	Parameter	Setting
TestPattern	<u>Off (0)</u>	Off
	GreyScale (1)	Monochrome chart
	ColorBar (2)	Color chart
	GreyHorizontalRamp (3)	Monochrome horizontal ramp
	GreyVerticalRamp (4)	Monochrome vertical ramp
	GreyScaleMoving (5)	Monochrome chart (moving) [*]
	ColorBarMoving (6)	Color chart (moving) [*]
	GreyHorizontalRampMoving (7)	Monochrome horizontal ramp (moving) [*]
	GreyVerticalRampMoving (8)	Monochrome vertical ramp (moving)*

* In a moving test pattern, the position to be drawn moves one pixel at a time for each frame.

Monochrome chart/color chart

	Monochrome		Color	
	Raw/Mono	R	G	В
1	0xF30	0xFFF	0xFFF	0xFFF
2	0xDC0	0xFFF	0xFFF	0
3	0xC80	0	0xFFF	0xFFF
4	0xA00	0	0xFFF	0
5	0x7A0	0xFFF	0	0xFFF
6	0x550	0xFFF	0	0
7	0x340	0	0	0xFFF

(12-bit notation)

Monochrome horizontal ramp

Bar pattern where the image level changes in the horizontal direction from step 0 by 1 pixel at a time.

Monochrome vertical ramp

Bar pattern where the image level changes in the vertical direction from step 0 by 1 line at a time.

3 × 3 Filter

Monochrome cameras and color cameras perform 3×3 area filtering on RAW output. The brightness of a central pixel and the eight pixels around it, and the parameter of each pixel are multiplied and added together, The result is the brightness of the center pixel. Specify using values between -8191 and +8191. The parameter 256 is ×1. Depending on the patterns of coefficients, you can use filtering to reduce noise, enhance edges, and extract contours.

Feature	Parameter	Setting
SpatialFilterEnable	<u>False (0)</u>	Filter off
	True (1)	Filter on

Feature	Parameter	Setting
SpatialFilterValue Selector	TopLeft, TopCenter, TopRight, CenterLeft, CenterCenter, CenterRight, BottomLeft, BottomCenter, BottomRight	Matrix position
SpatialFilterValue	-8191 to +8191	Filter coefficient

Select coefficients with SpatialFilterValueSelector and substitute values with SpatialFilterValue.

The rows with the entered coefficients are represented as follows.

TopLeft	TopCenter	TopRight
CenterLeft	CenterCenter	CenterRight
BottomLeft	BottomCenter	BottomRight

Within any 9-pixel layout, shown below, where the data for each pixel is given by Y_0 to Y_8 , the calculated filter result for Y'_4 is given by the following equation.

Y ₀	Y ₁	Y ₂
Y ₃	Y_4	Y ₅
Y ₆	Y ₇	Y ₈

 $\begin{array}{l} \textbf{Y}_{4}'=& \textit{TopLeft} \times \textbf{Y}_{0} +\textit{TopCenter} \times \textbf{Y}_{1} +\textit{TopRight} \times \textbf{Y}_{2} + \\ & \textit{CenterLeft} \times \textbf{Y}_{3} +\textit{CenterCenter} \times \textbf{Y}_{4} + \\ & \textit{CenterRight} \times \textbf{Y}_{5} +\textit{BottomLeft} \times \textbf{Y}_{6} + \\ & \textit{BottomCenter} \times \textbf{Y}_{7} +\textit{BottomRight} \times \textbf{Y}_{8} \end{array}$

GPIO

GPI

The signal level which is input pin 2 and pin 3 of the DC power supply input connector can be detected. After selecting a connector using LineSelector, the signal level is acquired from LineStatus.

GPO

Various signals can be output from pin 3 and pin 4 of the DC power supply input connector. Select a connector using LineSelector, set LineMode to Output, and set LineSource. The output polarity is set by LineInverter.

Feature	Parameter	Setting
LineSelector	Line1 (0)	Pin 2 of the DC power supply input connector
	Line2 (1)	Pin 3 of the DC power supply input connector
	Line3 (2)	Pin 4 of the DC power supply input connector
LineMode	Input (0)	Set to input
	Output (1)	Set to output
LineInverter	False (0)	Without output inversion
	<u>True (1)</u>	With output inversion
LineStatus		Input signal level
LineSource	TriggerThrough (0)	Trigger through signal
	ExposureActive (1)	Exposure signal
	StrobeActive (2)	Strobe control signal
	SensorReadout (3)	Sensor readout signal
	UserOutput0 (4)	User definition 0
	UserOutput1 (5)	User definition 1
	UserOutput2 (6)	User definition 2
	SignalTrue (7)	H level
	SignalFalse (8)	L level
	PulseGenerator (9)	Pulse generator signal

Setting example:

The strobe control signal is output on GPO2 (pin 3 of the DC power supply input connector, active-High). LineSelector = Line2 LineMode = Output LineInverter = False LineSource = StrobeActive

GPO output system diagram (example of GPO1)

Sensor readout (Sensor output)

When exposure finishes, this signal indicates that the image sensor is in the image output sequence. Output is available from the GPO2/3 connectors. The sensor readout signal is asserted before the optical black (OB) and the effective pixel area are output.

Trigger signal		
Exposure signal	EXP	
Sensor readout signal (Sensor output)		

Pulse output

A pulse waveform can be output from the GPO2/3 connector. Available range is 0.5 Hz to 100 kHz.

Feature	Parameter	← PulseDuty →
PulseDuty	1 to <u>500000</u> to 2000000 [µs]	
PulseCycle	10 to <u>1000000</u> to 2000000 [µs]	
	•	PulseCycle

Status LED

The status indicated by the LED (lit, blinking, not lit) on the rear panel is as follows: You can change whether LEDs are lit or not with a user command.

Lit	Power supply is applied. Ready for operation.
Blinking	Power supply is applied. Connected by USB 2.0.
Off	Power supply is not available, or the power supply is connected but not turned on. Or the LED was turned off by a user command.

Feature	Parameter	Setting
LEDMode	False (0)	Off
	<u>True (1)</u>	Lit

Temperature Readout Function

The camera's internal temperature can be read from a temperature sensor mounted on the module board. Its accuracy is ± 2 °C. Use this value as a general guide.

Feature	Parameter	Setting
DeviceTemperature		Temperature sensor value

Defect Correction

This function corrects for white defect pixels and black defect pixels. A correction is applied for defective pixels by interpolating from the peripheral pixels surrounding the detected defect. The factory setting and user setting can be selected.

Feature	Parameter	Setting
DefectCorrection	False (0)	Correction off
	<u>True (1)</u>	Correction on

Defect correction setup procedure

1 Set conditions in which white defect points are easier to detect. Below is an example in which the gain is 18 dB and the shutter is 1 second. Prevent as much light as possible from entering by blocking light.

```
> Gain = 18
```

```
> ExposureTime = 1000000
```

2 Set the threshold in units of 14 bits. White defect points are detected when this level is exceeded. Below is an example for 3200 steps/14 bits. Pixels in the range 3200 to 16383 are detected.

> DefectThreshold = 3200

3 Execute white defect point detection. Detection takes four times the EXP time setting. The output levels for the same X coordinate are shown below. The display is uniformly black around step 1000 for an all-black image, but defect pixels (at high levels) are present in some locations. All pixels whose level exceed the step 3200 threshold set in step **2** are detected.

> DefectDetectionMode = DetectWhitePixels

- 4 Execute black defect point detection. Like the white defect point detection, set the image pickup conditions and the threshold in units of 14 bits. Below is an example for 10000 steps/14 bits. Pixels from step 0 to step 10000 are detected. If not setting black defect points, you can skip this step.
 - > DefectThreshold = 10000
 - > DefectDetectionMode = DetectBlackPixels

Read the status to determine whether the detection is finished.

> DefectDetectionMode (readout)
DetectBlackPixels (executing)
Off (exit)
The value Off is returned when finished.

5 Select the data for applying defect correction. To apply the pixels detected in steps **3** and **4**, select DefectPatternDetected. To apply factory settings, select DefectPatternFactory. To apply values that have been saved, select DefectPatternUser.

Feature	Parameter	Setting
DefectPatternLoad	DefectPattern Factory (0)	Factory setting
	DefectPattern User (1)	User setting
	DefectPattern Detected (2)	Data detected using DefectDetectionMode

6

Turn on defect correction.

> DefectCorrection = True

7 Save the settings. To repeat defect detection without saving, repeat steps 1 to 6.

> DefectPatternSave = True

Read the status to determine whether the save operation is finished.

> DefectPatternSave (readout)True (executing)False (exit)The value False is returned when finished.

Note

The upper limit of defect detection points is 2047 for white and black defect points combined. Correction cannot be performed over the upper limit. The detected defect points can be confirmed using

DefectDetectionResult. If the upper limit is exceeded, defect detection will fail or abnormal defect detection will occur, and the value of DefectDetectionResult will be set to -1. Defect detection should be performed with the camera mode set to NORMAL. For details, see "Camera Mode" (page 12).

Shading Correction

Depending on the characteristics of the lens, shading caused by a drop in the amount of light around the lens, or light source variation, can be corrected. You can save up to 31 user-defined patterns.

There are two shading correction modes. In peak detection mode, you can adjust for the brightest level of the screen. In average detection mode, you can adjust for the average value of brightness for the whole screen.

Feature	Parameter	Setting
ShadingDetection Mode	ShadingDetectionOff (0)	Check that the detection is completed
	ShadingDetectionBy PeakValue (1)	Start detection (peak detection)
	ShadingDetectionBy AverageValue (2)	Start detection (average detection)

Set the camera mode to NORMAL. For details,	see
"Camera Mode" (page 12).	

Feature	Parameter	Setting
Shading	<u>False (0)</u>	Correction off
Correction	True (1)	Correction on
Facture	Devemeter	Catting
reature	Parameter	Setting
ShadingPattern Select	<u>0</u> to 30	Shading pattern selection
Feature	Parameter	Setting
ShadingPattern	ShadingPatternSaveOff	Check that shading
Save	<u>(0)</u>	pattern saving is
		finished
	ShadingPatternSaveOn	Start shading
	(1)	pattern saving
— .	_	a
Feature	Parameter	Setting
ShadingPattern		Load shading
Load		pattern
— .	 .	A
Feature	Parameter	Setting
ShadingDetect	Red	Red
Color	Green	Green
	Blue	Blue
	Luminance	Luminance

Shading detection setup procedure

As shown in the figure below, assume an environment in which the brightness is not uniform due to an uneven light source. In peak detection mode, shading correction adjusts the brightness level as the target level.

Fix the lens and lighting conditions.

2 Adjust the exposure time and other parameters so that the target level is about 50%. On color cameras, adjust the white balance.

3 Performs shading detection by selected mode.

> ShadingDetectionMode = ShadingDetectionByPeakValue or ShadingDetectionByAverageValue

Read the status to determine whether the calculation is finished.

> ShadingDetectionMode (readout) ShadingDetectionByPeakValue or ShadingDetectionByAverageValue (executing) ShadingDetectionOff (exit) The value ShadingDetectionOff is returned when finished.

- **4** Check the shading correction effect.
 - > ShadingPatternCheck
- **5** Save the shading pattern.

>ShadingPatternSelect = 0 > ShadingPatternSave = ShadingPatternSaveOn

Read the status to determine whether the save operation is finished.

> ShadingPatternSave (readout) ShadingPatternSaveOn (executing) ShadingPatternSaveOff (exit) The value ShadingPatternSaveOff is returned when finished.

6 Read out the saved pattern.

>ShadingPatternSelect = 0 > ShadingPatternLoad

Note

Perform the shading detection with the trigger mode set to off.

Peak detection mode

ShadingDetectionMode = ShadingDetectionByPeakValue

The subject appears brighter.

Average value detection mode

ShadingDetectionMode = ShadingDetectionByAverageValue

User Set

The main configuration values can be saved to channels 1 to 16 using UserSet. For details about items that are saved, see "Command List" (page 34).

Factory settings are saved to channel 0, and cannot be overwritten.

Setting example 1:

Shutter is 3 ms, Gain is 3 dB, Pulse signal is output to GPO3 connector (this setting is saved to channel 1). ExposureTime = 3000 Gain = 3 LineSelector = Line3 LineMode = Output LineSource = PulseGenerator UserSetSelector = UserSet1 UserSetSave

Setting example 2:

The user set saved in the channel 2 is loaded. UserSetSelector = UserSet2 UserSetLoad

User set memory

A number is assigned to one item saved in each user set channel. Signed 32-bit numbers are assigned to slots 0 to 15.

User ID

User IDs are unique names that can be assigned to cameras. A string that is 64 characters long can be assigned.

Feature	Parameter
DeviceUserID	Arbitrary 64 characters

Saving and Startup

The startup settings can be determined using UserSetDefault. This is also used to check which user set settings are currently being used.

Usage example:

Startup with the setting saved in user set channel 3. UserSetDefault = UserSet3 (Restart or DeviceReset command)

Check which user set settings are the current settings. Read UserSetDefault

Camera Information

The model name of a camera and its firmware information can be read out.

Feature	Parameter
DeviceVendorName	Manufacturer (Sony)
DeviceModelName	Model name
DeviceVersion	Device version
DeviceSerialNumber	Serial number
DeviceManufacturerInfo	Data for manufacturer service

Restarting

The camera reboots 3 seconds after the reset command is sent. Exit the application software during this short interval.

Feature	
DeviceReset	

Command List

Category () / Sub category ()	Read/ Write ^{*1}	Description	See page
DeviceControl	RO	Category for device information and control features.	-
DeviceType	RO	Returns the device type.	-
DeviceScanType	RO	Scan type of the sensor of the device.	-
DeviceVendorName	RO	Name of the manufacturer of the device (Sony).	33
DeviceModelName	RO	Model name of the device.	33
DeviceManufacturerInfo	RO	Manufacturer information about the device.	33
DeviceVersion	RO	Version of the device.	33
DeviceFirmwareVersion	RO	Version of the firmware in the device.	-
DeviceSerialNumber	RO	Serial number of the device.	33
DeviceUserID	RW	User-programmable device identifier.	33
DeviceSFNCVersionMajor	RO	Major version of the Standard Features Naming Convention that was used to create the device's GenICam XML.	-
DeviceSFNCVersionMinor	RO	Minor version of the Standard Features Naming Convention that was used to create the device's GenICam XML.	_
DeviceSFNCVersionSubMinor	RO	Sub minor version of the Standard Features Naming Convention that was used to create the device's GenICam XML.	_
DeviceManifestEntrySelector	RW	Selects the manifest entry to reference.	_
DeviceManifestXMLMajorVersion	RO	Indicates the major version number of the GenICam XML file of the selected manifest entry.	-
DeviceManifestXMLMinorVersion	RO	Indicates the minor version number of the GenICam XML file of the selected manifest entry.	-
DeviceManifestXMLSubMinorVersion	RO	Indicates the sub minor version number of the GenICam XML file of the selected manifest entry.	-
DeviceManifestSchemaMajorVersion	RO	Indicates the major version number of the schema file of the selected manifest entry.	-
DeviceManifestSchemaMinorVersion	RO	Indicates the minor version number of the schema file of the selected manifest entry.	-
DeviceTLType	RO	Transport Layer type of the device.	_
DeviceTLVersionMajor	RO	Major version of the Transport Layer of the device.	_
DeviceTLVersionMinor	RO	Minor version of the Transport Layer of the device.	-
DeviceTLVersionSubMinor	RO	Sub minor version of the Transport Layer of the device.	-
DeviceGenCPVersionMajor	RO	Major version of the GenCP protocol supported by the device.	_
DeviceGenCPVersionMinor	RO	Minor version of the GenCP protocol supported by the device.	-
DeviceConnectionSelector	RW	Selects which connection of the device to control.	_
DeviceConnectionSpeed	RO	Indicates the speed of transmission of the specified connection.	-
DeviceConnectionStatus	RO	Indicates the status of the specified connection.	-
DeviceLinkSelector	RW	Selects which link of the device to control.	-
DeviceLinkSpeed	RO	Indicates the speed of transmission negotiated on the specified link.	-
DeviceLinkThroughputLimitMode	RW	Controls if DeviceLinkThroughputLimit is active.	-

Category () / Sub category () Feature	Read/ Write ^{*1}	Description	See page
DeviceLinkThroughputLimit	RW	Limits the maximum bandwidth of the data that will be streamed out by the device on the selected link.	-
DeviceLinkConnectionCount	RO	Returns the number of physical connection of the device used by a particular link.	-
DeviceLinkCommandTimeout	RO	Indicates the command timeout of the specified link.	-
DeviceStreamChannelCount	RO	Indicates the number of streaming channels supported by the device.	-
DeviceStreamChannelSelector	RW	Selects the stream channel to control.	-
DeviceStreamChannelType	RO	Returns the type of the stream channel.	-
DeviceStreamChannelLink	RW	Index of device's link to use for streaming the specified stream channel.	-
DeviceStreamChannelEndianness	RO	Endianness of multi-byte pixel data for this stream.	-
DeviceEventChannelCount	RO	Indicates the number of event channels supported by the device.	-
DeviceCharacterSet	RO	Character set used by the strings of the device's bootstrap registers.	_
DeviceReset	WO	Resets the device to its power up state.	33
DeviceRegistersEndianness	RO	Endianness of the registers of the device.	-
DeviceTemperature	RO	Device temperature in degrees Celsius (°C).	30
TimestampLatch	WO	Latches the current timestamp counter into TimestampLatchValue.	-
TimestampLatchValue	RO	Returns the latched value of the timestamp counter.	-
FactoryDefault	RW	Restores all settings to the factory default.	-
ImageFormatControl	RO	Category for image format control features.	-
SensorWidth	RO	Effective width of the sensor (in pixels).	-
SensorHeight	RO	Effective height of the sensor (in pixels).	-
SensorUnitCellSizeH	RO	Horizontal pixel cell size.	-
SensorUnitCellSizeV	RO	Vertical pixel cell size.	-
WidthMax	RO	Maximum width of the image (in pixels).	-
HeightMax	RO	Maximum height of the image (in pixels).	-
Width	RW	Width of the image provided by the device (in pixels).	11
Height	RW	Height of the image provided by the device (in pixels).	11
OffsetX	RW	Horizontal offset from the origin to the region of interest (in pixels).	11
OffsetY	RW	Vertical offset from the origin to the region of interest (in pixels).	11
BinningHorizontal	RW *2	Number of horizontal photo-sensitive cells to combine together.	11
BinningVertical	RW *2	Number of vertical photo-sensitive cells to combine together.	11
ReverseX	RW	Flip horizontally the image sent by the device.	15
ReverseY	RW	Flip vertically the image sent by the device.	15
PixelFormat	RW	Format of the pixels provided by the device.	14
PixelSize	RO	Total size in bits of a pixel of the image.	-
TestPattern	RW	Selects the type of test pattern that is generated by the device as the image source.	26

Category () / Sub category () Feature	Read/ Write ^{*1}	Description	See page
AcquisitionControl	RO	Category for the acquisition and trigger control features.	-
AcquisitionMode	RW	Sets the acquisition mode of the device.	-
AcquisitionAbort	RW	Aborts the acquisition immediately.	-
AcquisitionFrameCount	RW	Number of frames to acquire in MultiFrame acquisition mode.	_
AcquisitionFrameRateAuto	RW	Automatically controls the maximum rate (in Hz) at which the line in a frame is captured when TriggerMode is Off.	21
AcquisitionFrameRate	RW	Controls the rate (in Hz) at which the line in a frame is captured when TriggerMode is Off for the frame trigger.	21
AcquisitionFrameRateActual	RO	Indicates the actual frame rate (in Hz).	21
TriggerMode	RW	Controls if the selected trigger is active.	17
TriggerSoftware	RW	Generates an internal trigger.	17
TriggerSource	RW	Specifies the internal signal or physical input line to use as the trigger source.	17
TriggerActivation	RW	Specifies the activation mode of the trigger.	8
TriggerDelay	RW	Specifies the delay in microseconds to apply after the trigger reception before activating it.	20
TriggerInhibit	RW	Specifies the activation of the trigger.	19
TriggerFastMode	RW	Sets the trigger mode of the image sensor.	22
TriggerCounter	RO	Gets the count of trigger.	20
TriggerCounterReset	WO	Resets the trigger counter.	20
TriggerAcceptanceRangeEnable	RW	Controls if the trigger acceptance range is enabled.	20
TriggerAcceptanceRangeLowerLimit	RW	Sets the lower limit of trigger acceptance range.	20
FrameCounter	RO	Gets the count of frames.	22
FrameCounterReset	WO	Resets the frame counter.	22
ExposureMode	RW	Sets the operation mode of the exposure.	17
ExposureTime	RW	Sets the exposure time when ExposureMode is Timed and ExposureAuto is Off.	16
ExposureAuto	RW	Sets the automatic exposure mode when ExposureMode is Timed.	16
ExposureAutoSpeed	RW	Sets the automatic exposure speed.	16
ExposureAutoLowerLimit	RW	Sets the lower limit for Exposure Auto mode.	16
ExposureAutoUpperLimit	RW	Sets the upper limit for Exposure Auto mode.	16
Exposure2Time	RW	Sets the second exposure time for burst trigger mode.	18
Exposure2Ratio	RW	Sets the exposure time ratio for burst trigger mode.	18
BurstFrameCount	RW	Sets the number of frames to acquire in burst trigger mode.	18
BurstTriggerMode	RW	Sets burst trigger mode.	18
BurstTriggerPeriod	RW	Sets the burst period type.	18
BurstForceStop	WO	Stops the acquisition of the device at the end of the current frame.	18
AnalogControl	RO	Category that contains the analog control features.	-
GainSelector	RW	Selects which gain is controlled by the various gain features.	_
Gain	RW	Controls the selected gain as an absolute physical value (in dB).	15
GainAnalog	RW	Controls the selected gain as an absolute physical value.	15
GainDigitalRed *3	RW	Digital gain for the red channel.	24

Category () / Sub category () Feature	Read/ Write ^{*1}	Description	See page
GainDigitalGreen *3	RW	Digital gain for the green channel.	24
GainDigitalBlue *3	RW	Digital gain for the blue channel.	24
GainAuto	RW	Sets automatic gain control (AGC) mode.	15
GainAutoLevel	RW	Sets the target level for Gain Auto and Exposure Auto mode.	15
GainAutoSpeed	RW	Sets the automatic gain speed.	15
GainAutoLowerLimit	RW	Sets the lower limit for the gain auto control.	15
GainAutoUpperLimit	RW	Sets the upper limit for the gain auto control.	15
BlackLevel	RW	Controls the analog black level as an absolute physical value.	_
BalanceWhiteAuto *3	RW	Controls the mode for automatic white balancing between the color channels.	24
SpatialFilterEnable	RW	Activates the 3×3 spatial filter.	27
SpatialFilterValueSelector	RW	Selects which physical line (or pin) of the external device connector to control.	27
SpatialFilterValue	RW	Controls the selected parameter for 3×3 spatial filter. 256 means $\times 1.0$.	27
ColorTransformationEnable *4	RW	Activates the color transformation filter.	26
ColorTransformationValueSelector *4	RW	Selects which physical line (or pin) of the external device connector to control.	26
ColorTransformationValue *4	RW	Controls the selected parameter for color transformation filter. 256 means ×1.0.	26
LUTControl	RO	Category that includes LUT control features.	-
LUTEnable	RW	Activates the selected LUT.	25
LUTFormat	RW	Selects which LUT format is controlled among the various LUT formats.	25
BinarizationThreshold	RW	Controls the binarization threshold (12 bits).	25
LinearInterpolationIndex	RW	Selects the index point to build a linear interpolation LUT.	25
LinearInterpolationInValue	RW	Specifies the In value of the point selected by LinearInterpolationIndex.	25
LinearInterpolationOutValue	RW	Specifies the Out value of the point selected by LinearInterpolationIndex.	25
LinearInterpolationBuild	WO	Builds a linear interpolation LUT.	25
LUTIndex	RW	Controls the index (offset) of the coefficient to access in the selected LUT.	25
LUTValue	RW	Returns the value at entry LUTIndex of the LUT selected by LUTSelector.	25
LUTValueSave	WO	Saves the value of the LUT to flash memory.	26
DigitallOControl	RO	Category that contains the digital input and output control features.	-
LineSelector	RW	Selects the physical line (or pin) of the external device connector or the virtual line of the Transport Layer to configure.	28
LineMode	RW	Controls if the physical line is used to input or output a signal.	28
LineSource	RW	Selects which internal acquisition or I/O source signal to output on the selected line.	28
LineInverter	RW	Controls the inversion of the signal of the selected input or output line.	28
LineStatus	RO	Returns the current status of the selected input or output line.	28

Category () / Sub category () Feature	Read/ Write ^{*1}	Description	See page
StrobeControl	RO	Controls strobe signal output.	-
StrobeActiveTime2	RW	Sets the strobe active time (in µs) for line 2.	-
StrobeActiveDelay2	RW	Specifies the delay (in μ s) to apply after StrobeActive before activating it.	-
StrobeActiveTime3	RW	Sets the strobe active time (in μ s) for line 3.	-
StrobeActiveDelay3	RW	Specifies the delay (in μ s) to apply after StrobeActive before activating it.	-
PulseWidthControl	RO	Controls the pulse output.	-
PulseCycle	RW	Controls the pulse cycle.	29
PulseDuty	RW	Controls the pulse duty.	29
UserOutputControl	RO	Controls the user output.	-
UserOutputSelector	RW	Selects which bit of the UserOutput register will be set by UserOutputValue.	-
UserOutputValue	RW	Sets the value of the bit selected by UserOutputSelector.	-
UserOutput0	RW	Controls the value of User Output 0.	-
UserOutput1	RW	Controls the value of User Output 1.	-
UserOutput2	RW	Controls the value of User Output 2.	-
EventControl	RO	Category that contains event control features.	-
EventSelector	RW	Selects which event to signal to the host application.	-
EventNotification	RW	Activates or deactivates the notification to the host application of the occurrence of the selected event.	-
EventAcquisitionStartData	RO	Category that contains all the data features related to the acquisition start event.	-
EventAcquisitionStart	RO	Returns the unique identifier of the acquisition start type of the event.	-
EventAcquisitionStartTimestamp	RO	Returns the timestamp of the acquisition start event.	-
EventAcquisitionStartFrameID	RO	Returns the unique identifier of the frame (or image) that generated the acquisition start event.	_
EventAcquisitionEndData	RO	Category that contains all the data features related to the acquisition end event.	-
EventAcquisitionEnd	RO	Returns the unique identifier of the acquisition end type of the event.	-
EventAcquisitionEndTimestamp	RO	Returns the timestamp of the acquisition end event.	-
EventAcquisitionEndFrameID	RO	Returns the unique identifier of the frame (or image) that generated the acquisition end event.	-
EventAcquisitionErrorData	RO	Category that contains all the data features related to the acquisition error event.	-
EventAcquisitionError	RO	Returns the unique identifier of the acquisition error type of the event.	-
EventAcquisitionErrorTimestamp	RO	Returns the timestamp of the acquisition error event.	-
EventAcquisitionErrorFrameID	RO	Returns the unique identifier of the frame (or image) that generated the acquisition error event.	-
EventErrorData	RO	Category that contains all the data features related to the error event.	-
EventError	RO	Returns the unique identifier of the error type of the event.	_
EventErrorTimestamp	RO	Returns the timestamp of the error event.	_
EventErrorFrameID	RO	Returns the unique identifier of the frame (or image) that generated the error event, if applicable.	-
EventErrorCode	RO	Returns an error code for the error(s) that happened.	-

Ca Fe	tegory () / Sub category () ature	Read/ Write ^{*1}	Description	See page
	EventTestData	RO	Category that contains all the data features related to the event test generated using the TestEventGenerate command.	-
	EventTest	RO	Returns the unique identifier of the event test type of event generated using the TestEventGenerate command.	_
	EventTestTimestamp	RO	Returns the timestamp of the event test event.	-
Us	erSetControl	RO	Category that contains the User Set control features.	33
	UserSetSelector	RW	Selects the feature User Set to load.	33
	UserSetLoad	RW	Loads the User Set specified by UserSetSelector to the device and makes it active.	33
	UserSetSave	RW	Saves the User Set specified by UserSetSelector to the non-volatile memory of the device.	33
	UserSetDefault	RW	Selects the feature User Set to load and make active by default when the device is reset.	33
	UsersetMemoryIndex	RW	Provides the index (offset) of the user-programmable identifier to access in the UserMemory.	-
	UsersetMemoryValue	RW	Represents the value found at entry UserMemoryIndex.	_
Ch	unkDataControl	RO	Category that contains the Chunk Data control features.	-
	ChunkModeActive	RW	Activates the inclusion of chunk data in the payload of the image.	-
	ChunkSelector	RW	Selects which chunk to enable or control.	-
	ChunkEnable	RW	Enables the inclusion of the selected chunk data in the payload of the image.	-
	ChunkImage	RO	Returns the entire image data included in the payload.	-
	ChunkOffsetX	RO	Returns the OffsetX value of the image included in the payload.	-
	ChunkOffsetY	RO	Returns the OffsetY value of the image included in the payload.	-
	ChunkWidth	RO	Returns the Width value of the image included in the payload.	-
	ChunkHeight	RO	Returns the Height value of the image included in the payload.	-
	ChunkPixelFormat	RO	Returns the PixelFormat value of the image included in the payload.	-
	ChunkTimestampLatchValue	RO	Returns the last timestamp latched with the TimestampLatch command.	-
	ChunkExposureTime	RO	Returns the exposure time used to capture the image.	-
	ChunkGain	RO	Returns the analog gain used to capture the image.	-
	ChunkGainDigitalRed *3	RO	Returns the digital gain for the red channel used to capture the image.	-
	ChunkGainDigitalGreen *3	RO	Returns the digital gain for the green channel used to capture the image.	-
	ChunkGainDigitalBlue ^{*3}	RO	Returns the digital gain for the blue channel used to capture the image.	_
Te	stControl	RO	Category for Test Control features.	-
	TestPendingAck	RW	Tests the device's pending acknowledge feature.	_
	TestEventGenerate	RW	Generates a test event.	-
	TriggerEventTest	WO	Generates the test event if the event channel is enabled. (Alternate command of TestEventGenerate)	-

Category () / Sub category () Feature	Read/ Write ^{*1}	Description	See page
TransportLayerControl	RO	Category that contains the transport layer control features.	-
PayloadSize	RO	Provides the number of bytes transferred for each image or chunk on the stream channel.	-
SonySpecificControl	RO	Category that contains the Sony specific control features.	-
CameraModeSelector	RW	Selects camera mode.	12
CameraModeCurrent	RO	Indicates the current camera mode.	_
LEDMode	RW	Controls the LED light.	30
GainAutoArea	RO	Category that contains detection area control for auto gain control and auto exposure feature.	15
GainAutoHighlight	RW	Performs highlight area for auto gain control and auto exposure feature.	15
GainAutoAreaWidth	RW	Indicates the percentage of the width for automatic gain's detection area.	15
GainAutoAreaHeight	RW	Indicates the percentage of the height for automatic gain's detection area.	15
GainAutoAreaOffsetX	RW	Indicates the percentage of the offset-X for automatic gain's detection area.	15
GainAutoAreaOffsetY	RW	Indicates the percentage of the offset-Y for automatic gain's detection area.	15
BalanceWhiteAutoArea *3	RO	Category that contains detection area control for auto white balance feature.	24
BalanceWhiteHighlight *3	RW	Performs highlight area for auto white balance control and auto exposure feature.	24
BalanceWhiteAutoAreaWidth *3	RW	Indicates the percentage of the width for automatic white balance's detection area.	24
BalanceWhiteAutoAreaHeight *3	RW	Indicates the percentage of the height for automatic white balance's detection area.	24
BalanceWhiteAutoAreaOffsetX *3	RW	Indicates the percentage of the offset-X for automatic white balance's detection area.	24
BalanceWhiteAutoAreaOffsetY *3	RW	Indicates the percentage of the offset-Y for automatic white balance's detection area.	24
Defect	RO	Category that contains defect detection and correction control features.	30
DefectThreshold *5	RW	Sets the threshold level for defect detection.	30
DefectDetectionMode *5	RW	Starts detection of defect pixels.	30
DefectDetectionResult *5	RO	Gets the result of defect pixel detection.	30
DefectPatternSave *5	RW	Saves the defect pixel coordinates in nonvolatile memory.	30
DefectPatternLoad	RW	Loads the defect pixel coordinates.	30
DefectCorrection	RW	Enables defect correction.	30
Shading	RO	Category that contains shading detection and correction control features.	31
ShadingDetectColor *3 *5	RW	Specifies which color is used for shading detection.	31
ShadingDetectionMode *5	RW	Performs shading detection by selected mode.	31
ShadingPatternCheck *5	WO	Performs the current detected pattern.	31
ShadingPatternSelect	RW	Selects a shading pattern to load or save.	31
ShadingPatternSave *5	RW	Saves the detected pattern specified by ShadingPatternSelect to the non-volatile memory of the device.	31

Categ Featu	gory () / Sub category () re	Read/ Write ^{*1}	Description	See page
	ShadingPatternLoad	WO	Loads the shading pattern specified by ShadingPatternSelect to the device.	31
	ShadingCorrection	RW	Activates the shading correction by the selected pattern.	31
Aı	reaGain	RO	Category that contains area gain control features.	15
	AreaGainEnableAll	RW	Controls if all gain areas are enabled.	15
	AreaGainSelect	RW	Selects a gain area of interest.	15
	AreaGainEnable	RW	Controls if the selected area is enabled.	15
	AreaGainWidth	RW	Width of the selected area (in pixels).	15
	AreaGainHeight	RW	Height of the selected area (in pixels).	15
	AreaGainOffsetX	RW	Horizontal offset from the origin to the region of interest (in pixels).	15
	AreaGainOffsetY	RW	Vertical offset from the origin to the region of interest (in pixels).	15
	AreaGainValue	RW	Gain value of the selected area (in pixels).	15
M	ultiROI	RO	Category that contains MultiROI control features.	13
	MultiROIMode	RW	Controls if all MultiROI areas are enabled.	13
	MultiROISelect	RW	Selects a MultiROI area of interest.	13
	MultiROIEnable	RW	Controls if the selected area is enabled.	13
	MultiROIWidth	RW	Width of the selected area (in pixels).	13
	MultiROIHeight	RW	Height of the selected area (in pixels).	13
	MultiROIOffsetX	RW	Horizontal offset from the origin to the region of interest (in pixels).	13
	MultiROIOffsetY	RW	Vertical offset from the origin to the region of interest (in pixels).	13

Specifications

Specifications

Imaging device 1/2.9 type CMOS image sensor with global shutter function Standard video output size (horizontal/vertical) 1.440×1.080 Frame rate 100 fps Lens mount C-mount Flange focal length 17.526 mm Video output signal XCU-CG160: Mono 8 bits (default setting)/12 bits XCU-CG160C: Raw 8 bits (default setting)/12 bits, BGR 24 bits, YCbCr 24 bits, YCbCr 16 bits Reference video output level 235 steps (8 bits)/3,760 steps (12 bits) Reference pedestal level 15 steps (8 bits)/240 steps (12 bits) Range of color temperature for white balance XCU-CG160C: 2,400 K to 9,000 K Minimum illumination (gain control at +18 dB, F1.4, shutter speed at 1/30 sec) XCU-CG160: 0.5 lx XCU-CG160C: 12 lx Sensitivity XCU-CG160: F5.6 (gain control at 0 dB, 400 lx, shutter speed at 1/30 sec) XCU-CG160C: F5.6 (gain control at 0 dB, 2,000 lx, shutter speed at 1/30 sec) Gain 0 dB to 18 dB, Auto gain Shutter speed 1/100,000 sec to 60 sec, automatic shutter (image quality is retained for 2 seconds) $\gamma = 1$ (Changeable by LUT) Gamma Power requirements USB bus power (DC $5V \pm 5\%$): USB connector DC 12 V (10.5 V to 15 V): DC power supply input connector Power consumption 3.0 W (USB bus power) 3.5 W (DC) Performance guarantee temperature 0 °C to 40 °C (32 °F to 104 °F) Operating temperature -5 °C to +45 °C (23 °F to 113 °F) Storage temperature -30 °C to +60 °C (-22 °F to +140 °F) Operating relative humidity 20% to 80% (no condensation)

Storage relative humidity 20% to 80% (no condensation) MTBF Approx. 7.7 years Vibration resistance 10 G (20 Hz to 200 Hz) Shock resistance 70 G External dimensions (w/h/d) $29 \times 29 \times 30$ mm $(1^{3}/_{16} \times 1^{3}/_{16} \times 1^{3}/_{16} \text{ inches})$ (excluding protrusions) Approx. 50 g (1.8 oz) Mass Lens mount cap (1)Accessories Operating Instructions (1)

Design and specifications are subject to change without notice.

Spectral Sensitivity Characteristics (Typical Values)

XCU-CG160

XCU-CG160C

Dimensions

Sony reserves the right to change specifications of the products and discontinue products without notice. Technical information contained herein is for reference only and does not convey any license by any implication or otherwise under any intellectual property right or other right of Sony or third parties. Sony cannot assume responsibility for any right infringements arising out of the use of this information.